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Distributed Nash Equilibrium Seeking over
Time-Varying Directed Communication Networks

Duong Thuy Anh Nguyen, Student Member, IEEE, Duong Tung Nguyen, Member, IEEE,
and Angelia Nedić, Member, IEEE

Abstract—We study distributed algorithms for finding a Nash
equilibrium (NE) in a class of non-cooperative convex games
under partial information. Specifically, each agent has access only
to its own smooth local cost function and can receive information
from its neighbors in a time-varying directed communication
network. To this end, we propose a distributed gradient play al-
gorithm to compute a NE by utilizing local information exchange
among the players. In this algorithm, every agent performs a
gradient step to minimize its own cost function while sharing and
retrieving information locally among its neighbors. The existing
methods impose strong assumptions such as balancedness of the
mixing matrices and global knowledge of the network communi-
cation structure, including Perron-Frobenius eigenvector of the
adjacency matrix and other graph connectivity constants. In
contrast, our approach relies only on a reasonable and widely-
used assumption of row-stochasticity of the mixing matrices.
We analyze the algorithm for time-varying directed graphs and
prove its convergence to the NE, when the agents’ cost functions
are strongly convex and have Lipschitz continuous gradients.
Numerical simulations are performed for a Nash-Cournot game
to illustrate the efficacy of the proposed algorithm.

Index Terms—Nash equilibrium, game theory, time-varying
directed graphs, distributed algorithms.

I. INTRODUCTION

Game theory provides a framework to understand decision
making in strategic situations where multiple agents aim
to optimize their individual, yet interdependent, objective
functions. The notion of Nash equilibrium (NE) in non-
cooperative games characterizes desirable and stable solutions
to the games, which subsequently can be used to predict the
agents’ individual strategies and payoffs. A NE is a joint
action from which no agent has an incentive to unilaterally
deviate. Indeed, non-cooperative games have been extensively
studied to address various engineering problems in different
areas, such as communication networks, electricity markets,
power systems, flow control, and crowdsourcing [1], [11], [16],
[20], [26]. Hence, developing efficient NE seeking algorithms
has drawn increasing attention in recent years. In this paper,
based on the distributed gradient play approach, we develop a
discrete-time algorithm to find a NE in a non-cooperative game
played over time-varying directed communication networks.

In classical non-cooperative complete information game the-
ory, the payoff of each agent is determined by its own actions
and the observations of the other agents’ actions. Thus, a large
body of existing work, using best-response or gradient-based
schemes, requires each agent to know the competitors’ actions

The authors are with the School of Electrical, Computer and Energy
Engineering, Arizona State University, Tempe, AZ, United States. Email:
{dtnguy52, duongnt, Angelia.Nedich}@asu.edu. Corresponding Author: An-
gelia Nedić.

to search for a NE [2], [28], [29]. However, this full-decision
information assumption is impractical in many engineering
systems [17], for example, the Nash-Cournot competition [7].
Recently, there has been extensive research conducted on fully
distributed algorithms, which rely on local information only
(i.e., the partial-decision information setting [3]), to compute
NE. However, most of the proposed algorithms are built upon
the (projected) gradient and consensus dynamics approaches,
in both continuous time [9], [27] and discrete time [12], [22].
Also, they are based on the information available to the agents
and need certain properties of the agents’ cost functions, such
as convexity, strong monotonicity, and Lipschitz continuity.

In [17], the authors propose a gradient-based gossip algo-
rithm for distributed NE seeking in general non-cooperative
games. For a diminishing stepsize, this algorithm converges
almost surely to a NE under strict convexity, Lipschitz conti-
nuity, and bounded gradient assumptions. With the further as-
sumption of strong convexity, a constant stepsize α guarantees
the convergence to an O(α) neighborhood of the NE. In [19]
an algorithm within the framework of the inexact-ADMM
is developed and its convergence rate o(1/k) is established
for a fixed stepsize under the co-coercivity assumption on
the game mapping. Reference [23] provides an accelerated
version of the gradient play algorithm (Acc-GRANE) for
solving variational inequalities. The analysis is based on
strong monotonicity of a so-called augmented mapping which
takes into account both the gradients of the cost functions
and the communication settings. However, this algorithm is
applicable only to a subclass of games characterized by a
restrictive connection between the agents, Lipschitz continuity,
and strong monotonicity constants. By assuming the restricted
strong monotonicity of the augmented game mapping, in [24],
the authors show that this algorithm can be applied to a broader
class of games and demonstrate its geometric convergence to
a NE. However, both types of the procedures mentioned above
require a careful selection of both stepsize and the augmented
mapping. Alternatively, by leveraging contractivity properties
of doubly stochastic matrices, in [22], the authors develop
a distributed gradient-play based scheme whose convergence
properties do not depend on the augmented mapping. Nev-
ertheless, all the methods cited above are designed for time-
invariant undirected networks.

There is a growing interest in studying NE seeking for
communication networks with switching topologies. The early
works [12], [13] consider aggregative games over time-
varying, jointly connected, and undirected graphs. This result
is extended in [4] to games with coupling constraints. In [18],
an asynchronous gossip algorithm to find a NE over a directed
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graph is developed under the assumption that every agent is
able to update all the estimates of the agents who interfere with
its cost function. In [6], a projected pseudo-gradient based
algorithm is proposed that works for time-varying, weight-
balanced, and directed graphs. The balancedness assumption
is relaxed in follow-up work [5], where a modified algorithm
is proposed which requires global knowledge of the com-
munication graph structure, including the Perron-Frobenius
eigenvector of the adjacency matrix and a constant related to
the graph connectivity. However, constructing weight balanced
matrices even in a directed static graph is non-trivial and
computationally expensive [10], making it impractical for
time-varying directed graphs. Also, the knowledge of the
global communication structure is a demanding assumption
since the computation of the Perron-Frobenius eigenvector in
every iteration imposes significant computational burden.

Contributions. Motivated by the penetration of the game
theoretic approaches into cooperative control and distributed
optimization problems in engineering systems where full com-
munication is not available [3], [6], [22], [23], this paper
addresses NE seeking under the so-called partial-decision
information scenario. Agents only have access to their own
cost functions and local action sets, and engage in nonstrategic
information exchange with their neighbors in a network. Our
contributions are summarized as follows:
• We propose a fully-distributed algorithm to compute

a NE over time-varying directed communication net-
works. While previous works assumed balancedness, or
the knowledge of some global communication network
parameters, our approach only requires the usual row-
stochasticity assumption on the weights. The algorithm is
simple to implement in a distributed fashion as each agent
can locally decide on the weights for the information
received from its neighbors.

• The proposed algorithm does not depend on any pa-
rameter related to the network structure, such as the
Perron-Frobenius eigenvector of the adjacency matrix
or any other constant related to the graph connectivity.
Moreover, the convergence analysis of our approach does
not rely on the augmented mapping used in [22], [24];
instead, the convergence of the method is focused on the
choice of the stepsize values.

• We prove that the algorithm is guaranteed to converge to
a NE under mild assumptions of convexity, strong mono-
tonicity, and Lipschitz continuity of the game mapping.

II. NOTATIONS AND TERMINOLOGIES

Throughout this paper, all vectors are viewed as column
vectors unless stated otherwise. We consider real normed space
E, which is either space of real vectors E = Rn or the space
of real matrices E = Rn×n. For every vector u ∈ Rn, u′ is
the transpose of u. We use 〈·, ·〉 to denote the inner product,
and ‖ · ‖ to denote the standard Euclidean norm. We write 0
and 1 to denote the vector with all entries equal to 0 and 1,
respectively. The dimensions of the vectors 0 and 1 are to be
understood from the context.

In this paper, we consider a discrete time model where the
time index is denoted by k. The i-th entry of a vector u is
denoted by ui, while it is denoted by [uk]i for a time-varying

vector uk. Given a vector v, we use min(v) and max(v) to
denote the smallest and the largest entry of v, respectively, i.e.,
min(v) = mini vi and max(v) = maxi vi. We write v > 0 to
indicate that the vector v has positive entries. A vector is said
to be a stochastic vector if its entries are nonnegative and sum
to 1. For a set S with finitely many elements, we use |S| to
denote its cardinality.

To denote the ij-th entry of a matrix A, we write Aij ,
and we write [Ak]ij when the matrix is time-dependent. For
any two matrices A and B of the same dimension, we write
A ≤ B to denote that Aij ≤ Bij , for all i and j; in
other words, the inequality A ≤ B is to be interpreted
component-wise. A matrix is said to be nonnegative if all
its entries are nonnegative. For a nonnegative matrix A, we
use min(A+) to denote the smallest positive entry of A, i.e.,
min(A+) = min{ij:Aij>0}Aij . A nonnegative matrix is said
to be row-stochastic if each row entries sum to 1, and it is
said to be column-stochastic if each column entries sum to 1.
In particular, if A ∈ Rn×n is row-stochastic and B ∈ Rn×n
is column-stochastic, then A1 = 1 and 1′B = 1′.

We call a matrix A consensual, if it has equal row vectors.
The largest and smallest eigenvalues in modulus of a matrix
A are denoted as λmax{A} and λmin{A}, respectively. For
any matrix A ∈ Rn×n, we use diag(A) to denote its diagonal
vector, i.e. diag(A) = (a11, . . . , ann)′. For any vector u ∈ Rn
we use Diag(u) to denote the diagonal matrix with the vector
u on its diagonal.

Given a vector π ∈ Rm with positive entries π1, . . . , πm, the
π-weighted inner product and π-weighted norm are defined,
respectively, as follows:

〈u,v〉π =
∑m
i=1 πi〈ui, vi〉 and ‖u‖π =

√∑m
i=1 πi‖ui‖2,

where u :=


u′1
...
u′m

 ,v :=


v′1
...
v′m

 ∈ Rm×n, and ui, vi ∈ Rn.

When π = 1, we simply write ‖u‖, for which we have:

1√
max(π)

‖u‖π ≤ ‖u‖ ≤
1√

min(π)
‖u‖π. (1)

Furthermore, using the Cauchy–Schwarz inequality, we obtain:

〈u,v〉π =

∣∣∣∣∣
m∑
i=1

πi〈ui, vi〉

∣∣∣∣∣ ≤
m∑
i=1

πi|〈ui, vi〉| ≤
m∑
i=1

πi‖ui‖‖vi‖

≤

√√√√( m∑
i=1

πi‖ui‖2
)(

m∑
i=1

πi‖vi‖2
)

= ‖u‖π‖v‖π. (2)

Thus, the Cauchy–Schwarz inequality holds for the π-
weighted inner product and the π-weighted norm.

A mapping g : E → E is said to be strongly monotone on a
set Q ⊆ E with the constant µ > 0, if 〈g(u)− g(v), u− v〉 ≥
µ‖u− v‖2 for any u, v ∈ Q, where ‖ · ‖ is the corresponding
norm in E. A mapping g : E → E is said to be Lipschitz
continuous on a set Q ⊆ E with the constant L > 0, if ‖g(u)−
g(v)‖ ≤ L‖u− v‖.

We let [m] denote the set {1, . . . ,m} for an integer m ≥ 1.
A directed graph G = ([m],E) is specified by the set of edges
E ⊆ [m] × [m] of ordered pairs of nodes. Given two distinct
nodes j, l ∈ [m] (j 6= l), a directed path from node j to



3

node l in the graph G is a finite (ordered) sequence of edges
{(i0, i1), . . . , (it−1, it)} passing through distinct nodes, where
i0 = j, it = l, and (is−1, is) ∈ E for all s = 1, . . . , t.

Definition 1 (Graph Connectivity). A directed graph is
strongly connected if there is a directed path from any node
to all the other nodes in the graph.

Given a directed path, the length of the path is the number
of edges in the path.

Definition 2 (Graph Diameter). The diameter of a strongly
connected directed graph G is the length of the longest path
in the collection of all shortest directed paths connecting all
ordered pairs of distinct nodes in G.

We denote the diameter of the graph G by D(G).
In what follows, we consider special collections of shortest

directed paths which we refer to as shortest-path covering of
the graph. Let pjl denote a shortest directed path from node
j to node l, where j 6= l.

Definition 3 (Shortest-Path Graph Covering). A collection P
of directed paths in G is a shortest-path graph covering if
pjl ∈ P and plj ∈ P for any two nodes j, l ∈ [m], j 6= l.

Denote by S(G) the collection of all possible shortest-path
coverings of the graph G.

Given a shortest-path covering P ∈ S(G) and an edge
(j, l) ∈ E, the utility of the edge (j, l) with respect to the
covering P is the number of shortest paths in P that pass
through the edge (j, l). Define K(P) as the maximum edge-
utility in P taken over all edges in the graph, i.e.,

K(P) = max
(j,l)∈E

∑
p∈P

χ{(j,l)∈p},

where χ{(j,l)∈p} is the indicator function taking value 1 when
(j, l) ∈ p and, otherwise, taking value 0.

Definition 4 (Maximal Edge-Utility). Let G = ([m],E) be a
strongly connected directed graph. The maximal edge-utility
in the graph G is the maximum value of K(P) taken over all
possible shortest-path coverings P ∈ S(G), i.e.,

K(G) = max
P∈S(G)

K(P).

As an example, consider a directed-cycle graph G of the
nodes 1, 2, . . . ,m. Then, K(G) = m− 1.

Given a directed graph G = ([m],E), we define the in-
neighbor and out-neighbor set for every agent i, as follows:

N in
i = {j ∈ [m] | (j, i) ∈ E},

N out
i = {` ∈ [m] | (i, `) ∈ E}.

When the graph varies over time, we use a subscript to indicate
the time instance. For example, Ek will denote the edge-set of
a graph Gk, N in

ik and N out
ik denote the in-neighbors and the

out-neighbors of a node i, respectively. In our setting here, the
agents will be the nodes in the graph, so we will use the terms
”node” and ”agent” interchangeably.

III. PROBLEM FORMULATION

We consider a non-cooperative game between m agents. For
each agent i ∈ [m], let Ji(·) and Xi ⊆ Rni be the cost function
and the action set of the agent. Let n =

∑m
i=1 ni be the size of

the joint action vector of the agents. Each function Ji(xi, x−i)
depends on xi and x−i, where xi ∈ Xi is the action of the
agent i and x−i ∈ X−i = X1×· · ·×Xi−1×Xi+1×· · ·×Xm

denotes the joint action of all agents except agent i.
Denote the game by Γ = ([m], {Ji}, {Xi}). A solution to

the game Γ is a Nash equilibrium (NE) x∗ ∈ X1 × · · · ×Xm

such that for every agent i ∈ [m], we have:

Ji(x
∗
i , x
∗
−i) ≤ Ji(xi, x∗−i), ∀xi ∈ Xi. (3)

When for every agent i, the action set Xi is closed and
convex, and the cost function Ji(xi, x−i) is also convex and
differentiable in xi for each x−i ∈ X−i, a NE x∗ ∈ X of
the game can be alternatively characterized by using the first-
order optimality conditions. Specifically, x∗ ∈ X is a NE of
the game if and only if for all i ∈ [m], we have:

〈∇iJi(x∗i , x∗−i), xi − x∗i 〉 ≥ 0, ∀xi ∈ Xi. (4)

Using the Euclidean projection property, it can be seen that
the preceding relation is equivalent to:

x∗i = ΠXi
[x∗i − αi∇iJi(x∗i , x∗−i)], ∀i ∈ [m], (5)

where αi > 0 is an arbitrary scalar. By stacking the relations
in (5), we can rewrite them in a compact form. By this way,
x∗ is a NE for the game Γ if and only if:

x∗ = ΠX [x∗ − Fα(x∗)], (6)

where X = X1× · · · ×Xm is the agents’ joint action set and
Fα(·) is the scaled gradient mapping of the game, defined by

Fα(x) ,

 α1∇1J1(x1, x−1)
...

αm∇mJm(xm, x−m)

 , (7)

where ∇iJi(xi, x−i) = ∇xi
Ji(xi, x−i) for all i ∈ [m].

In the absence of constraints on the agents’ access to each
others’ actions, an NE point can be computed by implementing
a simple iterative algorithm (see [8]). In particular, starting
with some initial point x0i ∈ Xi, each agent i updates its
decision at time k as follows:

xk+1
i = ΠXi [x

k
i − αi∇iJi(xki , xk−i)]. (8)

This algorithm is guaranteed to converge to a NE under
suitable conditions. However, it requires that every agent i
has access to all other agents’ decisions xk−i at every time k.

A. Graph-constrained Agents’ Interactions

In this paper, we focus on the setting where the agents’ in-
teractions over time are constrained by a sequence of directed
time-varying communication graphs. When the agents interact
at time k, their interactions are constrained by a directed graph
Gk = ([m],Ek), where the set of nodes is the agent set [m]
and Ek is the set of directed links. The directed link (j, i)
indicates that agent i can receive information from agent j.

Given that our game Γ has constraints on agents’ access to
actions of other agents, we consider an adaptation of the basic
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algorithm (8) that will obey the information access as dictated
by the graph Gk at time k. In the absence of the access to
xk−i, agent i will use an estimate zki,−i instead, which leads to
the following update rule for each agent i ∈ [m]:

xk+1
i = ΠXi [v

k+1
ii − αi∇iJi(vk+1

ii , zk+1
i,−i )]. (9)

where the vector vk+1
ii is some estimate (based on what

neighbors think the actions of agent i are) and zk+1
i,−i =

(zk+1
i1 , . . . , zk+1

i,i−1, z
k+1
i,i+1, . . . , z

k+1
im ) ∈ Rn−ni consisting of the

estimates zk+1
ij that agent i has about the true decision vector

xkj for every agent j 6= i. Notice that we have the index k+ 1

for the estimates vk+1
ii and zk+1

i,−i since they are constructed at
time k + 1 upon information exchange among the neighbors
in the graph Gk.

In this situation, vk+1
ii need not belong to the set Xi at any

time k, as the other agents may not know this set. Also, as
agent i does not know the action space X−i, the estimate zk+1

ij

need not lie in the set X−i. Thus, the function Ji(xi, x−i)
should be defined on the set Rn, where n =

∑m
i=1 ni.

Specifically, regarding the agents’ cost functions and their
action sets, we use the following assumptions:

Assumption 1. Consider the game Γ = ([m], {Ji}, {Xi}),
and assume that for all i ∈ [m]:
(a) The mapping ∇iJi(xi, ·) is Lipschitz continuous on

Rn−ni for every xi ∈ Rni with a uniform constant
L−i > 0.

(b) The mapping ∇iJi(·, x−i) is Lipschitz continuous on Rni

for every x−i ∈ Rn−ni with a uniform constant Li > 0.
(c) The mapping ∇iJi(·, x−i) is strongly monotone on Rni

for every x−i ∈ Rn−ni with a uniform constant µi > 0.
(d) The set Xi is nonempty, convex, and closed.

Remark 1. Under Assumption 1, a NE point exists and
it is unique (Theorem 2.3.3 of [8]). Moreover, it can be
equivalently captured as the fixed point solution (see (6)).
The differentiability of the cost functions on a larger range
of x−i ∈ Rn−ni is assumed to ensure that the algorithm (9)
is well defined.

IV. DISTRIBUTED ALGORITHM

We consider the distributed algorithm over a sequence {Gk}
of underlying directed communication graphs. We assume that
every node has a self-loop in each graph Gk, so that the
neighbor sets N in

ik and N out
ik contain agent i at all times.

Specifically, we use the following assumption.

Assumption 2. Each graph Gk = ([m],Ek) is strongly
connected and has a self-loop at every node i ∈ [m].

For each k, each agent i has a column vector zki =
(zki1, . . . , z

k
im)′ ∈ Rn, where zkij is agent i’s estimate of

the decision xkj for agent j 6= i, while zkii = xki . Let
zkj,−i = (zkj1, . . . , z

k
j,i−1, z

k
j,i+1, . . . , z

k
jm)′ ∈ Rn−ni be the

estimate of agent j without the i-th block-component. Hence,
zki consists of the decision zkii of agent i and the estimate zki,−i
of agent i for the decisions of the other agents.

At time k, every agent i sends zki to its out-neighbors
` ∈ N out

ik and receives estimates zkj from its in-neighbors
j ∈ N in

ik . Once the information is exchanged, agent i computes

vk+1
ii that is an estimate of xki based on what the in-neighbors

think the actions of agent i is, and, the estimate zk+1
i,−i .

Then, agent i updates its own action accordingly. Intuitively,
using the estimates based on the information gathered from
neighbors can improve the accuracy of the estimates including
the estimate of its own action since more information is taken
into account. The agents’ estimates are constructed by using
a row-stochastic weight matrix Wk that is compliant with the
connectivity structure of the graph Gk, in the sense that:{

[Wk]ij > 0, when j ∈ N in
ik ,

[Wk]ij = 0, otherwise.
(10)

Note that every agent i controls the entries in the ith row of
Wk, which does not require any coordination of the weights
among the agents. In fact, balancing the weights [6] would
require some coordination among the agents or some side
information about the structure of the graphs Gk, which we
avoid imposing in this paper.

The estimate vk+1
ii of xk+1

i is constructed based on the
information that i receives from its in-neighbors j ∈ N in

ik with
the corresponding weights, as follows:

vk+1
ii =

m∑
l=1

[Wk]ilz
k
li. (11)

Agent i estimate of other agents’ actions is computed as:

zk+1
i,−i =

m∑
j=1

[Wk]ijz
k
j,−i. (12)

Finally, using these estimates, agent i updates its own action
according to the following formula

xk+1
i = ΠXi [v

k
ii − αi∇iJi(vk+1

ii , zk+1
i,−i )].

The procedure is summarized in Algorithm 1.

Algorithm 1: Distributed Method
Every agent i ∈ [m] selects a stepsize αi > 0 and an
arbitrary initial vector z0i ∈ Rn.
for k = 0, 1, . . . , every agent i ∈ [m] does the following:

- Receives zkj from in-neighbors j ∈ N in
ik ;

- Sends zki to out-neighbors ` ∈ N out
ik ;

- Chooses the weights [Wk]ij , j ∈ [m];
- Computes the estimates vk+1

ii and zk+1
i,−i by

vk+1
ii =

∑m
l=1[Wk]ilz

k
li, and

zk+1
i,−i =

∑m
j=1[Wk]ijz

k
j,−i;

- Updates action xk+1
i by

xk+1
i = ΠXi

[vk+1
ii − αi∇iJi(vk+1

ii , zk+1
i,−i )];

- Updates the estimate zk+1
ii by zk+1

ii = xk+1
i ;

end for.

We make the following assumption on the matrices Wk.

Assumption 3. For each k ≥ 0, the weight matrix Wk is row-
stochastic and compatible with the graph Gk i.e., it satisfies
relation (10). Moreover, there exist a scalar w > 0 such that
min(W+

k ) ≥ w for all k ≥ 0.

V. BASIC RESULTS

In this section, we provide some basic results related to
norms of linear combinations of vectors, graphs, stochastic
matrices, and the gradient method.
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A. Linear Combinations and Graphs

Since the mixing terms
∑m
j=1[Wk]ijz

k
j used in Algorithm 1

are special linear combination of zkj , we start by establishing
a result for linear combinations of vectors. In particular, in
the forthcoming lemma, we provide a relation for the squared
norm of a linear combination of vectors, which will be used
in our analysis with different identifications.

Lemma 1. Let {ui, i ∈ [m]} ⊂ Rn be a collection of m
vectors and {γi, i ∈ [m]} be a collection of m scalars. Then,
the following statements are valid:
(a) We have:∥∥∥∥∥
m∑
i=1

γiui

∥∥∥∥∥
2

=

m∑
j=1

γj

 m∑
i=1

γi‖ui‖2−
1

2

m∑
i=1

m∑
j=1

γiγj‖ui−uj‖2.

(b) If
∑m
i=1 γi = 1 holds, then for all u ∈ Rn we have:

∥∥∥∥∥
m∑
i=1

γiui − u

∥∥∥∥∥
2

=

m∑
i=1

γi‖ui−u‖2−
1

2

m∑
i=1

m∑
j=1

γiγj‖ui−uj‖2.

Proof. (a) For ‖
∑m
i=1 γiui‖2, we have:∥∥∥∥∥

m∑
i=1

γiui

∥∥∥∥∥
2

= 〈
m∑
i=1

γiui,

m∑
j=1

γjuj〉

=

m∑
i=1

m∑
j=1

γiγj〈ui, uj〉

=

m∑
i=1

γ2i ‖ui‖2 +

m∑
i=1

m∑
j=1,j 6=i

γiγj〈ui, uj〉.

Using the identity

2〈v, w〉 = ‖v‖2 + ‖w‖2 − ‖v − w‖2,

which is valid for any two vectors v and w, we obtain:∥∥∥∥∥
m∑
i=1

γiui

∥∥∥∥∥
2

=

m∑
i=1

γ2i ‖ui‖2 (13)

+
1

2

m∑
i=1

m∑
j=1,j 6=i

γiγj
(
‖ui‖2+‖uj‖2−‖ui−uj‖2

)
.

Note that

m∑
i=1

m∑
j=1,j 6=i

γiγj
(
‖ui‖2 + ‖uj‖2

)
=

m∑
i=1

 m∑
j=1,j 6=i

γj

γi‖ui‖2 +

m∑
j=1

 n∑
i=1,i6=j

γi

 γj‖uj‖2,

we further obtain that

m∑
i=1

m∑
j=1,j 6=i

γiγj
(
‖ui‖2+‖uj‖2

)
= 2

m∑
i=1

 m∑
j=1,j 6=i

γj

γi‖ui‖2.

Therefore, by substituting the preceding equality in rela-
tion (13) we find that:∥∥∥∥∥

m∑
i=1

γiui

∥∥∥∥∥
2

=

m∑
i=1

γ2i ‖ui‖2 +

m∑
i=1

 m∑
j=1,j 6=i

γj

 γi‖ui‖2

− 1

2

m∑
i=1

m∑
j=1,j 6=i

γiγj‖ui − uj‖2.

The first two terms in the preceding relation give:

m∑
i=1

γ2i ‖ui‖2+

m∑
i=1

 m∑
j=1,j 6=i

γj

γi‖ui‖2 =

m∑
i=1

 m∑
j=1

γj

γi‖ui‖2,
implying that:∥∥∥∥∥

m∑
i=1

γiui

∥∥∥∥∥
2

=

m∑
i=1

 m∑
j=1

γj

γi‖ui‖2−1

2

m∑
i=1

m∑
j=1,j 6=i

γiγj‖ui−uj‖2.

(14)
The relation in part (a) follows by noting that the sum∑m
i=1

∑m
j=1,j 6=i γiγj‖ui−uj‖2 does not change when we add

the terms γiγj‖ui − uj‖2 for j = i, since they are all zero.
(b) Suppose now that

∑m
i=1 γi = 1. Then, for any vector u ∈

Rn, we have:
m∑
i=1

γiui − u =

m∑
i=1

γiui −

(
m∑
i=1

γi

)
u =

m∑
i=1

γi(ui − u).

We apply the relation from part (a) where ui is replaced with
ui − u, and by using the fact that

∑m
i=1 γi = 1, then for all

u ∈ Rn, we obtain:∥∥∥∥∥
m∑
i=1

γiui − u

∥∥∥∥∥
2

=

m∑
i=1

γi‖ui−u‖2−
1

2

m∑
i=1

m∑
j=1

γiγj‖ui−uj‖2.

We have the following result as an immediate consequence
of Lemma 1(b).

Corollary 1. Choosing u =
∑m
j=1 γ`u` in Lemma 1(b) yields,

in particular, that

1

2

m∑
i=1

m∑
j=1

γiγj‖ui − uj‖2 =

m∑
i=1

γi

∥∥∥∥∥ui −
m∑
`=1

γ`u`

∥∥∥∥∥
2

. (15)

Substituting the preceding relation back in the relation in part
(b) of Lemma 1 gives for all u ∈ Rn,∥∥∥∥∥

m∑
i=1

γiui−u

∥∥∥∥∥
2

=

m∑
i=1

γi‖ui−u‖2−
m∑
i=1

γi

∥∥∥∥∥ui−
m∑
`=1

γ`u`

∥∥∥∥∥
2

. (16)

Relation (16) is valid when
∑m
i=1 γi = 1. If additionally, the

scalars γi are non-negative, then relation (16) coincides with
the well known relation for weighted averages of vectors.

There are certain contraction properties of the distributed
method, which are inherited from the use of the mixing term∑m
j=1[Wk]ijz

k
j , and the fact that the matrix Wk is compliant

with a directed strongly connected graph Gk. Lemma 1 pro-
vides a critical result that will help us capture these contraction
properties. However, Lemma 1 alone is not sufficient since it
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does not make any use of the structure of the matrix Wk related
to the underlying graph Gk.

The graph structure is exploited in the forthcoming lemma
for a generic graph. More specifically, the lemma provides an
important lower bound on the quantity

∑
(j,`)∈E ‖zj − z`‖2

for a given directed graph G = ([m],E), where zi ∈ Rn is
a vector associated with a node i. The lower bound will be
applied to the graph Gk at time k, which provides the second
critical step leading us toward the contraction properties of the
iterate sequences.

Lemma 2. Let G = ([m],E) be a strongly connected directed
graph, where a vector zi ∈ Rn is associated with node i for
all i ∈ [m]. Let P∗ ∈ S(G) be a shortest path covering of the
graph G. We then have:∑

(j,`)∈E

‖zj − z`‖2 ≥
2

D(G)K(G)

m∑
j=1

m∑
`=j+1

‖zj − z`‖2,

where D(G) is the diameter of the graph and K(G) is the
maximal edge-utility in the graph (see Definitions 2 and 4).

Proof. Let P∗ = {p∗j` | j, ` ∈ [m], j 6= `}, where p∗j` is a
shortest path from node j to node `. Let E∗ be the collection of
all directed links that are traversed by any path in the shortest
path covering P∗, i.e.,

E∗={(i, q) ∈ E | (i, q) ∈ p∗j` for some p∗j` ∈ P∗}.

By the definition the maximal edge-utility K(G) (see Defini-
tion 4), we have:

K(G) ≥ K(P∗),

where K(P∗) is the maximal edge-utility with respect to the
shortest path covering P∗, i.e.,

K(P∗) = max
(i,q)∈E

∑
p∈P∗

χ{(i,q)∈p}.

Note that
∑

p∈P∗ χ{(i,q)∈p} = 0 when a link (i, q) is not
used by any of the paths in P∗. Thus, the value K(P∗) is
equivalently given by:

K(P∗) = max
(i,q)∈E∗

∑
p∈P∗

χ{(i,q)∈p}.

Consider the quantity K(P∗)
∑

(`,j)∈E ‖zj − z`‖2. Since
E∗ ⊆ E, it follows that

K(P∗)
∑

(j,`)∈E

‖zj − z`‖2 ≥ K(P∗)
∑

(i,q)∈E∗

‖zi − zq‖2

=
∑

(i,q)∈E∗

K(P∗)‖zi − zq‖2.

Since K(P∗) the maximal edge-utility with respect to paths in
the collection P∗, it follows that K(P∗) ≥

∑
p∈P∗ χ{(i,q)∈p}

for any link (i, q) which is used by a path in P∗. Hence,

K(P∗)
∑

(j,`)∈E

‖zj−z`‖2≥
∑

(i,q)∈E∗

∑
p∈P∗

χ{(i,q)∈p}

‖zi−zq‖2. (17)

Note that the sum on the right hand side in the preceding
relation is taken over all links in E∗ with the multiplicity with
which every (i, q) is used in the shortest path covering P∗.

Thus, it can be written in terms of the paths in P∗ which are
connecting distinct nodes j, ` ∈ [m], as follows:

∑
(i,q)∈E∗

∑
p∈P∗

χ{(i,q)∈p}

‖zi−zq‖2 =

m∑
j=1

m∑
`=j+1

∑
(i,q)∈p∗

j`

‖zi−zq‖2+

m∑
j=1

m∑
`=j+1

∑
(i,q)∈p∗

`j

‖zi−zq‖2. (18)

Using the convexity of the squared norm, we have:

1

|p∗j`|
∑

(i,q)∈p∗
j`

‖zi − zq‖2 ≥

∥∥∥∥∥∥ 1

|p∗j`|
∑

(i,q)∈p∗
j`

(zi − zq)

∥∥∥∥∥∥
2

=
1

|p∗j`|2
‖zj − z`‖2,

where |p∗j`| denotes the length of the path |p∗j`|. Hence,∑
(i,q)∈p∗

j`

‖zi − zq‖2 ≥
1

|p∗j`|
‖zj − z`‖2,

which in view of (18) implies that

∑
(i,q)∈E∗

∑
p∈P∗

χ{(i,q)∈p}

‖zi−zq‖2≥ m∑
j=1

m∑
`=j+1

1

|p∗j`|
‖zj−z`‖2

+

m∑
j=1

m∑
`=j+1

1

|p∗`j |
‖zj−z`‖2.

Hence, by the definition of the graph diameter D(G), we have
|p∗`j | ≤ D(G) for any j 6= `, implying that

∑
(i,q)∈E∗

∑
p∈P∗

χ{(i,q)∈p}

‖zi−zq‖2≥ 2

D(G)

m∑
j=1

m∑
`=j+1

‖zj−z`‖2.

(19)

Using the relations in (17) and (19), we obtain∑
(j,`)∈E

‖zj − z`‖2 ≥
2

D(G)K(P∗)

m∑
j=1

m∑
`=j+1

‖zj − z`‖2.

The desired relation follows by using the fact K(G) ≥ K(P∗).

B. Implications of Stochastic Nature of Matrix Wk

Here, we focus on the matrix sequence {Wk} and provide
some basic relations due to the row-stochasticity of the ma-
trices. In the forthcoming lemma, we state some convergence
properties of the transition matrices WkWk−1 · · ·Wt, which
are valid under the assumptions of strong connectivity of the
graphs Gk and the graph compatibility of the matrices Wk.
These properties are known for such a sequence of matrices
(see Lemma 2 in [14]).

Lemma 3. Let Assumption 2 hold, and let {Wk} be a matrix
sequence satisfying Assumption 3. Then, we have

(a) There exists a sequence {πk} of stochastic vectors such
that π′k+1Wk = π′k for all k ≥ 0.

(b) The entries of each πk have a uniform lower bound, i.e.,

[πk]i ≥
wm

m
for all i ∈ [m] and all k ≥ 0,
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where w is the lower bound on the positive entries of
the matrices Wk from Assumption 3.

Proof. By Assumption 2, the sequence {Wk} of row-
stochastic matrices is ergodic. Thus, Theorem 4.20 of [21] on
backwards products implies that there exists a unique sequence
of absolute probability vectors {πk}, i.e., a sequence {πk} of
stochastic vectors such that π′k+1Wk = π′k for all k ≥ 0. This
shows the result in part (a). The statement in part (b) follows
from Lemma 4 and Remark 2 of [14]. Specifically, in the proof
of Lemma 4 of [14], using the lower bound [Wk]ii ≥ w and
B = 1, we obtain δ′ ≥ wm. Remark 2 of [14] then gives

[πk]i ≥
wm

m
for all i ∈ [m] and all k ≥ 0.

The stochastic vectors πk from Lemma 3 will be used
to define an appropriate Lyapunov function associated with
the method. We note that the sequence {πk} is an absolute
probability sequence [21], which has also been used in [25]
to study the ergodicity properties of a more involved random
matrix sequences.

C. Contraction Property of Gradient Method

In this section, we analyze the contraction property of the
gradient mapping F (·) of the game when the mapping is
strongly monotone and Lipschitz continuous.

Lemma 4. Let Assumptions 1(a) and 1(b) hold. For all x, y ∈
Rn such that xi, yi ∈ Rni and x−i, y−i ∈ Rn−ni , we have

‖∇iJi(x)−∇iJi(y)‖2 ≤
(
L2
−i + L2

i

)
‖x− y‖2, (20)

where L−i and Li are the constants from Assumptions 1(a)
and 1(b), respectively.

Proof. First, we write

∇iJi(xi, x−i)−∇iJi(yi, y−i)
=∇iJi(xi, x−i)−∇iJi(xi, y−i)+∇iJi(xi, y−i)−∇iJi(yi, y−i).

By Assumption 1(a), we have

‖∇iJi(xi, x−i)−∇iJi(xi, y−i)‖ ≤ L−i‖x−i − y−i‖, (21)

while Assumption 1(b) gives

‖∇iJi(xi, y−i)−∇iJi(yi, y−i)‖ ≤ Li‖xi − yi‖. (22)

Therefore,

‖∇iJi(xi, x−i)−∇iJi(yi, y−i)‖2

≤ ξ

ξ − 1
‖∇iJi(xi, x−i)−∇iJi(xi, y−i)‖2

+ ξ‖∇iJi(xi, y−i)−∇iJi(yi, y−i)‖2

≤ ξ

ξ − 1
L2
−i‖x−i − y−i‖2 + ξL2

i ‖xi − yi‖2,

where the first inequality follows from (a+ b)2 ≤ ξ

ξ − 1
a2 +

ξb2, valid for any a, b ∈ R and ξ > 1, while the last inequality
follows from (21) and (22). The result is obtained by choosing

ξ = 1 +
L2
−i
L2
i

> 1 so that

ξ

ξ − 1
L2
−i = ξL2

i = L2
−i + L2

i .

In our analysis of Algorithm 1, we use a mapping Fα(·) :
Rm×n → Rm×n to capture the updates for all agents i ∈ [m]
at any time k. Specifically, given a matrix z ∈ Rm×n, let zi
be the vector in the ith row of z. Then, the ith row of the
matrix Fα(z) is defined by

[Fα(z)]i: = (0′n1
, . . . ,0′ni−1

, αi(∇iJi(zi))′,0′ni+1
, . . . ,0′nm

).
(23)

Lemma 5. Let Assumptions 1(a) and 1(b) hold. Consider the
mapping Fα(·) defined by (23), where αi > 0 for all i ∈ [m].
Then, for any weighted norm that is defined by a stochastic
vector π > 0, we have for all z,y ∈ Rm×n,

‖Fα(z)− Fα(y))‖2π ≤ L2
α‖z− y‖2π, (24)

where Lα =
√

max
i∈[m]
{α2

i

(
L2
−i + L2

i

)
}.

Proof. Let z,y ∈ Rm×n be arbitrary matrices, and let zi and
yi denote the vectors in the ith row of z and y, respectively,
for all i ∈ [m]. Next, we apply Lemma 4 as follows

‖Fα(z)− Fα(y)‖2π =

m∑
i=1

πiα
2
i ‖∇iJi(zi)−∇iJi(yi)‖

2

≤
m∑
i=1

πiα
2
i

(
L2
−i + L2

i

)
‖zi − yi‖2 ≤ L2

α‖z− y‖2π,

where Lα =
√

max
i∈[m]
{α2

i

(
L2
−i + L2

i

)
}.

VI. CONVERGENCE ANALYSIS

In this section, under the given assumptions, we will prove
that the iterate sequences {xki } generated by Algorithm 1
converge to the Nash equilibrium for all agents i ∈ [m].

A. Contractive Property of Weighted Dispersion
We start our analysis by considering generic vectors of the

form ri =
∑m
j=1Wijzj , i ∈ [m], where W is an m × m

row-stochastic matrix and zj ∈ Rn for all j. Noting that each
vector ri is a convex combination of the vectors zj , j ∈ [m],
we make use of Lemma 1 (and its implications) to obtain
an upper bound of some weighted dispersion of the vectors
r1, . . . , rm in terms of a weighted dispersion of the original
vectors z1, . . . , zm, as seen in the forthcoming lemma. The
derivation of the upper bound also makes use of Lemma 2.

Lemma 6. Let G = ([m],E) be a strongly connected directed
graph, and let W be an m×m row-stochastic matrix that is
compatible with the graph and has positive diagonal entries,
i.e., Wij > 0 when j = i and (j, i) ∈ E, and Wij = 0
otherwise. Also, let φ be a stochastic vector such that

φ′W = π′.

Consider a collection of vectors z1, . . . , zm ∈ Rn and consider
the vectors ri given by ri =

∑m
j=1Wijzj for all i ∈ [m]. Then,

for all u ∈ Rn, we have
m∑
i=1

φi ‖ri − u‖2 ≤
m∑
j=1

πj‖zj − u‖2

− min(φ) (min(W+))
2

max2(π)D(G)K(G)

m∑
j=1

πj‖zj − ẑπ‖2,
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where ẑπ =
∑m
i=1 πizi, and D(G) and K(G) are the diameter

and the maximal edge-utility of the graph G, respectively.

Proof. Let u ∈ Rn be arbitrary, we first estimate
∑m
i=1 πi‖ri−

u‖2. By the definition of ri, we have

‖ri − u‖2 =

∥∥∥∥∥∥
m∑
j=1

Wijzj − u

∥∥∥∥∥∥
2

.

Since W is row-stochastic, we can express the term
‖
∑m
j=1Wijzj − u‖2 by using Lemma 1(b). Letting γ =

(γ1, . . . , γm), we apply Lemma 1(b) with uj = zj for all
j, and γ = Wi:, where Wi: is the ith row-vector of the matrix
W . Thus, we obtain∥∥∥∥∥∥

m∑
j=1

Wijzj − u

∥∥∥∥∥∥
2

=

m∑
j=1

Wij‖zj − u‖2

− 1

2

m∑
j=1

m∑
`=1

WijWi` ‖zj − z`‖2 .

We multiply the preceding inequality by φi and, then, we sum
over all i to obtain

m∑
i=1

φi‖ri − u‖2 =

m∑
i=1

φi

m∑
j=1

Wij‖zj − u‖2

− 1

2

m∑
i=1

φi

m∑
j=1

m∑
`=1

WijWi`‖zj − z`‖2.

In the first term on the right hand side of the preceding
inequality we exchange the order of the summation and use
the relation φ′W = π′, which yields

m∑
i=1

φi

m∑
j=1

Wij‖zj − u‖2 =

m∑
j=1

(
m∑
i=1

φiWij

)
‖zj − u‖2

=

m∑
j=1

πj‖zj − u‖2.

Hence,

m∑
i=1

φi‖ri − u‖2 =

m∑
j=1

πj‖zj − u‖2 (25)

− 1

2

m∑
i=1

φi

m∑
j=1

m∑
`=1

WijWi`‖zj − z`‖2.

Now, we estimate the last term in (25). To do so, we
exchange the order of the summation and write

m∑
i=1

φi

m∑
j=1

m∑
`=1

WijWi`‖zj − z`‖2

=

m∑
j=1

m∑
`=1

‖zj − z`‖2
(

m∑
i=1

φiWijWi`

)

≥
m∑
j=1

∑
`∈N in

j

‖zj − z`‖2
(

m∑
i=1

φiWijWi`

)
.

Since the graph G is strongly connected, every node j must
have a nonempty in-neighbor set N in

j . Moreover, by assump-
tion 2, we have that Wjj > 0 every j ∈ [m] and Wj` > 0 for
all ` ∈ N in

j . Hence,

m∑
i=1

πiWijWi` ≥ πjWjjWj` ≥ πj
(

min
ij:Wij>0

Wij

)2

> 0.

Therefore, using the notation min(φ) = minj∈[m] φj and
min(W+) = minij:Wij>0Wij , we have

m∑
i=1

πi

m∑
j=1

m∑
`=1

WijWi`‖zj − z`‖2

≥min(φ)
(
min(W+)

)2 m∑
j=1

∑
`∈N in

j

‖zj − z`‖2

= min(φ)
(
min(W+)

)2 ∑
(`,j)∈E

‖zj − z`‖2. (26)

Next, we use Lemma 2 to bound from below the sum∑
(`,j)∈E ‖zj−z`‖2. Since G = ([m],E) is strongly connected

directed graph, by Lemma 2 it follows that∑
(j,`)∈E

‖zj − z`‖2 ≥
2

D(G)K(G)

m∑
j=1

m∑
`=j+1

‖zj − z`‖2,

where D(G) is the diameter of the graph G, and K(G) is
the maximal edge-utility in the graph G. From the preceding
relation and relation (26), we obtain

m∑
i=1

φi

m∑
j=1

m∑
`=1

WijWi`‖zj − z`‖2

≥2 min(φ) (min(W+))
2

D(G)K(G)

m∑
j=1

m∑
`=j+1

‖zj − z`‖2. (27)

To get to the π-weighted average of the vectors zj , we further
write
m∑
j=1

m∑
`=j+1

‖zj − z`‖2 =
1

2

m∑
j=1

m∑
`=1

‖zj − z`‖2

≥ 1

2 max2(π)

m∑
j=1

m∑
`=1

πjπ`‖zj − z`‖2,

where max(π) = maxi∈[m] πi. Finally, by using the weighted
average-dispersion relation (15), with γi = φi and ui = xi for
all i, we have

1

2

m∑
j=1

m∑
`=1

πjπ`‖zj − z`‖2 =

m∑
j=1

φj‖zj − ẑπ‖2,

where ẑπ =
∑m
`=1 π`z`. Using the preceding two relations and

relation (27), we see that
m∑
i=1

πi

m∑
j=1

m∑
`=1

WijWi`‖zj − z`‖2

≥2 min(φ) (min(W+))
2

max2(π)D(G)K(G)

m∑
j=1

πj‖zj − ẑπ‖2. (28)
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By substituting the estimate (28) in relation (25) we obtain
m∑
i=1

φi‖ri − u‖2 ≤
m∑
j=1

πj‖zj − u‖2

− min(φ) (min(W+))
2

max2(π)D(G)K(G)

m∑
j=1

πj‖zj − ẑπ‖2,

which is the desired relation.

Remark 2. Let π > 0 and φ > 0 in Lemma 6. Then, by
applying the lemma with ri =

∑m
j=1Wijzj and arbitrary

vector u ∈ Rn, we can write the resulting inequality in a
compact form, as follows:

‖Wz− 1mu
′‖2φ ≤ ‖z− 1mu

′‖2π − η‖z− 1mẑ
′
π‖2π,

where z is an m × n matrix with z′i in its ith row, ẑπ =∑m
i=1 πizi, and

η =
min(φ) min(W+)2

max2(π)D(G)K(G)
∈ (0, 1).

Remark 3. Applying Lemma 6 to time-varying matrix Wk

associated with a graph Gk, and stochastic vectors πk > 0,
πk+1 > 0 satisfying π′k+1Wk = π′k yields for arbitrary vector
u ∈ Rn,

‖Wz− 1mu
′‖2πk+1

≤ ‖z− 1mu
′‖2πk
− ηk‖z− 1mẑ

′
πk
‖2πk

,

where z is an m × n matrix with z′i in its ith row ẑπk
=∑m

i=1[πk]izi, w > 0 is the minimal positive entry in Wk, i.e.,
[Wk]ij ≥ w for all i, j such that [Wk]ij > 0, and

ηk =
min(πk+1)w2

max2(πk)D(Gk)K(Gk)
∈ (0, 1). (29)

To deal with the time-varying graphs Gk and their associ-
ated matrices Wk, under suitable assumptions, we will employ
Lemma 6 with the absolute probability sequence {πk} from
Lemma 3, as indicated by Remark 3. To do so, we will use a
lower bound on the constants ηk in (29), defined as follows:

η = min
k≥0

ηk, η ∈ (0, 1). (30)

We note that η ∈ (0, 1) holds under Assumption 2 and
Assumption 3. Generally, the worst bounds for D(Gk) and
K(Gk) are

D(Gk) ≤ m− 1, K(Gk) ≤ m− 1 for all k ≥ 0.

By Lemma 3, the smallest positive entries of πk+1 can be
uniformly bounded by wm

m , while max(πk) ≤ 1. This yields
the following extremely pessimistic lower bound for ηk:

ηk ≥
wm+2

m(m− 1)2
for all k ≥ 0.

If the graphs Gk are more structured, a tighter bound can be
obtained. For example, if each graph Gk is a directed cycle
over the nodes 1, . . . ,m and has self-loops at every node, then

D(Gk) = m− 1, K(Gk) = m− 1 for all k ≥ 0.

However, in this case, each graph Gk is 2-regular, and if the
diagonal entries of Wk are all equal to 1−w, with w ∈ (0, 1),
then we would have πk = 1

m1 for all k, yielding

ηk ≥
mw2

(m− 1)2
for all k ≥ 0.

By choosing w = (m−1)/m, we would obtain ηk ≥ 1
m for all

k ≥ 0. While exploring the graph structures leading to tighter
lower bounds ηk is interesting on its own, it is not further
explored in this paper. Throughout the rest of the work, we
will just use the fact that a bound η ∈ (0, 1) in (30) exists.

B. Convergence of Algorithm 1 over Time-varying Network

Assuming that the time-varying directed graphs Gk =
([m],Ek) are strongly connected and the weight matrices
Wk ∈ Rm×m are row-stochastic matrices that are compatible
with the graph Gk. Consider Algorithm 1, and let zki =
(zki1, . . . , z

k
im)′ ∈ Rn for all k ≥ 0. Let {πk} be the sequence

of stochastic vectors satisfying π′k+1Wk = π′k with πk > 0 for
all k. Using the iterates zki = (zki1, . . . , z

k
im)′, define matrices

zk =


(zk1 )′

...

(zkm)′

 , ẑk = 1m(ẑkπk
)′, x∗ = 1m(x∗)′, (31)

where ẑkπk
=
∑m
i=1[πk]iz

k
i and x∗ is an NE point of the game.

Our next result provides a basic relation for the time-varying
πk-weighted norm of the difference between zk and x∗.

Lemma 7. Let Assumption 1, Assumption 2, and Assumption 3
hold. Consider Algorithm 1 and the notation in (31). We then
have for all k ≥ 0,

‖zk+1−x∗‖2πk+1
≤
(
1+L2

α

)
‖Wkz

k−x∗‖2πk+1
−2βα‖ẑk−x∗‖2πk

+ 2Lα‖Wkz
k − x∗‖πk+1

‖Wkz
k − ẑk‖πk+1

+ 2Lα‖Wkz
k−ẑk‖πk+1

‖ẑk−x∗‖πk+1
,

where {πk} is the absolute probability sequence from
Lemma 3, Lα =

√
max
i∈[m]
{α2

i

(
L2
−i + L2

i

)
}, and βα =

mink≥0 mini∈[m]{[πk+1]iαiµi}.

Proof. Under Assumption 1, an NE point x∗ ∈ X exists and
it is unique. According to the update formula for zk+1 from
Algorithm 1, using the notation in (31), we have that

‖zk+1 − x∗‖2πk+1

=

m∑
i=1

[πk+1]i
(
‖xk+1

i − x∗i ‖2 + ‖zk+1
i,−i − x

∗
−i‖2

)
. (32)

Using the definition of xk+1
i in Algorithm 1, the fixed point

relation for the NE in (5), and the non-expansiveness property
of the projection, we obtain

‖xk+1
i − x∗i ‖2

=‖ΠXi

[
vk+1
ii −αi∇iJi(v

k+1
ii , z

k+1
i,−i )

]
−ΠXi

[x∗i−αi∇iJi(x∗)]‖2

≤‖vk+1
ii −αi∇iJi(v

k+1
ii , zk+1

i,−i )−(x∗i−αi∇iJi(x∗))‖2. (33)

Combining (32) and (33), and using the update formula for
vk+1
ii and zk+1

i,−i in Algorithm 1, we obtain

‖zk+1 − x∗‖2πk+1

≤‖(Wkz
k − x∗)− (Fα(Wkz

k)− Fα(x∗))‖2πk+1

=‖Wkz
k − x∗‖2πk+1

+ ‖Fα(Wkz
k)− Fα(x∗)‖2πk+1

− 2〈Wkz
k − x∗,Fα(Wkz

k)− Fα(x∗)〉πk+1
,
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where the mapping Fα(·) is as defined in (23). We apply
Lemma 5 to bound the second term in the preceding relation,
as follows:

‖Fα(Wkz
k)− Fα(x∗)‖2πk+1

≤ L2
α‖Wkz

k − x∗‖2πk+1
,

where Lα =
√

max
i∈[m]
{α2

i

(
L2
−i + L2

i

)
}. Therefore,

‖zk+1 − x∗‖2πk+1
≤ (1 + L2

α)‖Wkz
k − x∗‖2πk+1

− 2〈Wkz
k − x∗,Fα(Wkz

k)− Fα(x∗)〉πk+1
. (34)

To estimate the inner product in (34), we write

〈Wkz
k − x∗,Fα(Wkz

k)− Fα(x∗)〉πk+1

=〈Wkz
k − x∗,Fα(Wkz

k)− Fα(ẑk)〉πk+1

+ 〈Wkz
k − ẑk,Fα(ẑk)− Fα(x∗)〉πk+1

+ 〈ẑk − x∗,Fα(ẑk)− Fα(x∗)〉πk+1
. (35)

Applying the Cauchy–Schwarz inequality and Lemma 5, we
further obtain∣∣∣〈Wkz

k − x∗,Fα(Wkz
k)− Fα(ẑk)〉πk+1

∣∣∣
≤‖Wkz

k − x∗‖πk+1
‖Fα(Wkz

k)− Fα(ẑk)‖πk+1

≤Lα‖Wkz
k − x∗‖πk+1

‖Wkz
k − ẑk‖πk+1

. (36)

Similarly, ∣∣∣〈Wkz
k − ẑk,Fα(ẑk)− Fα(x∗)〉πk+1

∣∣∣
≤‖Wkz

k − ẑk‖πk+1
‖Fα(ẑk)− Fα(x∗)‖πk+1

≤Lα‖Wkz
k − ẑk‖πk+1

‖ẑk − x∗‖πk+1
. (37)

Next, we use Assumption 1(c) to estimate the last inner
product in (35), as follows:

〈ẑk − x∗,Fα(ẑk)− Fα(x∗)〉πk+1

=

m∑
i=1

[πk+1]iαi〈[ẑkπk
]i − x∗i ,∇iJi(ẑkπk

)−∇iJi(x∗)〉

≥
m∑
i=1

[πk+1]iαiµi‖[ẑkπk
]i − x∗i ‖2

≥ min
i∈[m]
{[πk+1]iαiµi}‖ẑkπk

− x∗‖2.

Note that ‖ẑkπk
− x∗‖2 = ‖ẑk − x∗‖2πk

, which follows by the
definitions of ẑk and x∗ in (31) and the fact that πk > 0 is a
stochastic vector. Thus,

〈ẑk − x∗,Fα(ẑk)− Fα(x∗)〉πk+1

≥ min
i∈[m]
{[πk+1]iαiµi} ‖ẑk − x∗‖2πk

. (38)

Upon substituting estimates (35)–(38) back into (34), we
obtain

‖zk+1−x∗‖2πk+1
≤
(
1 + L2

α

)
‖Wkz

k−x∗‖2πk+1

− 2 min
i∈[m]
{[πk+1]iαiµi} ‖ẑk−x∗‖2πk

+ 2Lα‖Wkz
k − x∗‖πk+1

‖Wkz
k − ẑk‖πk+1

+ 2Lα‖Wkz
k−ẑk‖πk+1

‖ẑk−x∗‖πk+1
.

Under Assumption 2 and Assumption 3, by Lemma 3,
the absolute probability sequence {πk} has entries uni-
formly bounded away from zero, implying that βα =
mink≥0 mini∈[m]{[πk+1]iαiµi} > 0. The stated relation fol-
lows by using βα in the preceding relation.

Now, we provide our convergence result for Algorithm 1.

Theorem 1. Let Assumption 1, Assumption 2, and Assump-
tion 3 hold. Consider Algorithm 1 and the notation in (31).
We then have for all k ≥ 0,

‖zk+1 − x∗‖2πk+1
≤ λmax(Q̄α)‖zk − x∗‖2πk

,

where λmax(Q̄α) is the largest eigenvalue of the matrix Q̄α,
which is given by

Q̄α =

[
1− 2βα + L2

α 2
√

1− ηLα

2
√

1− ηLα (1 + 2Lα + L2
α)(1− η)

]
,

with βα = mink≥0 mini∈[m]{[πk+1]iαiµi} > 0 and Lα =√
max
i∈[m]
{α2

i

(
L2
−i + L2

i

)
}. In particular, if the stepsizes αi, i ∈

[m], are chosen such that λmax(Q̄α) < 1, then

lim
k→∞

‖zk − x∗‖ = 0, lim
k→∞

‖xk − x∗‖ = 0.

Proof. By Lemma 7, we have that for all k ≥ 0,

‖zk+1−x∗‖2πk+1
≤
(
1+L2

α

)
‖Wkz

k−x∗‖2πk+1
−2βα‖ẑk−x∗‖2πk

+ 2Lα‖Wkz
k − x∗‖πk+1

‖Wkz
k − ẑk‖πk+1

+ 2Lα‖Wkz
k−ẑk‖πk+1

‖ẑk−x∗‖πk+1
.

From the definition of ẑk and x∗ in (31), it follows that

‖ẑk−x∗‖πk+1
= ‖ẑk−x∗‖πk

, (39)

implying that for all k ≥ 0,

‖zk+1−x∗‖2πk+1
≤
(
1 + L2

α

)
‖Wkz

k−x∗‖2πk+1
−2βα‖ẑk−x∗‖2πk

+ 2Lα‖Wkz
k − x∗‖πk+1

‖Wkz
k − ẑk‖πk+1

+ 2Lα‖Wkz
k−ẑk‖πk+1

‖ẑk−x∗‖πk
. (40)

The main idea of the rest of the proof is to determine the
evolution relations for the quantity ‖zk+1 − x∗‖πk+1

in terms
of ‖zk− ẑk‖πk

and ‖ẑk−x∗‖πk
. Toward this end, we employ

Lemma 6 with W = Wk, zi = zki , and stochastic vectors
φ = πk+1 > 0, π = πk > 0 (which satisfy π′k+1Wk = π′k
by Lemma 3). Thus, using the notation in (31), we obtain for
any vector u ∈ Rn and for all k ≥ 0,

‖Wkz
k−1mu′‖2πk+1

≤ ‖zk−1mu′‖2πk
−ηk‖zk−ẑk‖2πk

(41)

(see also Remark 3). By letting u = x∗ and using notation
x∗ = 1m(x∗)′ (see (31)), we have that

‖Wkz
k − x∗‖2πk+1

≤ ‖zk − x∗‖2πk
− ηk‖zk − ẑk‖2πk

. (42)

By using relation (41) with u = ẑk and notation ẑk =
1m(ẑkπk

)′ (see (31)), we obtain

‖Wkz
k − ẑk‖2πk+1

≤ (1− η)‖zk − ẑk‖2πk
, (43)

where we also use the definition of η in (30). Finally, by
Corollary 1, with γi = [πk]i, ui = zki , using notation ẑk =
1m(ẑkπk

)′ (see (31)), we see that for any u ∈ Rn,

‖ẑk − u‖2 = ‖zk − 1mu
′‖2πk
− ‖zk − ẑk‖2πk

.
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By letting u = x∗, rearranging the terms, and noting that
‖ẑk − x∗‖2 = ‖ẑk − x∗‖2πk

, we find that

‖zk − x∗‖2πk
= ‖zk − ẑk‖2πk

+ ‖ẑk − x∗‖2πk
. (44)

Plugging in the relation (44) for the first term in (42), we
obtain the following

‖Wkz
k−x∗‖2πk+1

≤ ‖ẑk−x∗‖2πk
+(1−η)‖zk− ẑk‖2πk

. (45)

Moreover, by the triangle inequality, (39) and (43), we have

‖Wkz
k − x∗‖πk+1

≤ ‖Wkz
k − ẑk‖πk+1

+ ‖ẑk − x∗‖πk+1

≤
√

1− η‖zk − ẑk‖πk
+ ‖ẑk − x∗‖πk

. (46)

Now, we are ready to finish the proof of the theorem.
Substituting the preceding relations (43) and (46) back into
(40), it follows that

‖zk+1 − x∗‖2πk+1

≤
(
1 + L2

α

)
((1− η)‖zk − ẑk‖2πk

+ ‖ẑk − x∗‖2πk
)

+2Lα(
√

1−η ‖zk−ẑk‖πk
+‖ẑk−x∗‖πk

)
√

1−η ‖zk−ẑk‖πk

+2Lα
√

1− η‖zk − ẑk‖πk
‖ẑk − x∗‖πk

− 2βα‖ẑk − x∗‖2πk

=

[
‖ẑk − x∗‖πk

‖zk − ẑk‖πk

]′
Q̄α

[
‖ẑk − x∗‖πk

‖zk − ẑk‖πk

]
,

where

Q̄α =

[
1− 2βα + L2

α 2
√

1− ηLα

2
√

1− ηLα (1 + 2Lα + L2
α)(1− η)

]
.

Hence,

‖zk+1 − x∗‖2πk+1
≤λmax(Q̄α)(‖ẑk − x∗‖2πk

+ ‖zk − ẑk‖2πk
)

=λmax(Q̄α)‖zk − x∗‖2πk
.

where λmax(Q̄α) is the largest eigenvalue of the matrix Q̄α,
and the last equality is obtained by using (44). The rest of the
statement follows immediately from the preceding relation.

Theorem 1 shows that the iterates {xk} of Algorithm 1
converge to the NE x∗ with a geometric rate if the stepsizes αi
are suitably chosen. Moreover, the estimates zki also converge
to x∗ with a geometric rate for all agents i ∈ [m]. To illustrate
that such stepsizes can be found, lets consider the case when
α = αi for all i ∈ [m]. Recalling that

Lα =
√

max
i∈[m]
{α2

i

(
L2
−i + L2

i

)
},

βα = min
k≥0

min
i∈[m]
{[πk+1]iαiµi},

we have

Lα = αL with L =
√

max
i∈[m]
{L2
−i + (L2

i }, (47)

βα = αδ with δ = min
k≥0

min
i∈[m]
{[πk+1]iµi}. (48)

It follows that λmax(Q̄α) < 1 if and only if the matrices Q̄α
and I − Q̄α are positive definite. By Sylvester’s criterion, the
following inequalities should hold [Q̄α]1,1 > 0, det(Q̄α) > 0,

[I − Q̄α]1,1 > 0, and det(I − Q̄α) > 0. These inequalities,
respectively, yield the following conditions for α:

L2α2 − 2δα+ 1 > 0 (49)

(1− η)[L4α4 + 2L2(L− δ)α3

−2L(L+ 2δ)α2 + 2(L− δ)α+ 1] > 0 (50)

−L2α2 + 2δα > 0 (51)

α[L4(1− η)α3 + 2L2(L− δ)(1− η)α2

−(4L(L+ δ)(1− η) + L2η)α+ 2ηδ] > 0 (52)

with L, δ given in (47)–(48) and η is defined in (30).
Note that the strong monotonicity constant µi and the

Lipschitz constant for the gradient mapping ∇iJi(·, xi) always
satisfy µi ≤ Li (see Assumption 1). By the definition of L
in (47), it follows that µi ≤ L for all i. Since each πk is a
stochastic vector, by the definition of δ in (48), it follows that
δ < L. As a consequence, the inequality (49) holds for any
α ∈ R.

Solving (51) leads to

0 < α <
2δ

L2
. (53)

Moreover, since the constant terms of the polynomials in
(50) and (52) are positive, we can choose stepsize α small
enough that satisfies the two inequalities. Specifically, we have
1− η > 0 and L− δ > 0, thus, (50) holds when

L4α4 − 2L(L+ 2δ)α2 + 1 > 0,

which gives

α <
L(L+ 2δ)− 2L

√
Lδ + δ2

L4

or α >
L(L+ 2δ) + 2L

√
Lδ + δ2

L4
. (54)

The inequality in (52) holds if the quantity inside the square
brackets is positive. By rearranging terms and factoring (1−η)
out, we obtain:

(1−η)
[
L4α2+2L2(L−δ)α−4L(L+δ)

]
α+η(2δ−L2α) > 0

From (53) we have 2δ−L2α > 0 and since η ∈ (0, 1), we can
either choose α very close to 0 so that the term η(2δ−L2α)
dominates or we can require the following inequality to hold

L4α2 + 2L2(L− δ)α− 4L(L+ δ) > 0,

which is equivalent to have

α >
−(L− δ) +

√
5L2 + 2Lδ + δ2

L2
, (55)

if it satisfies (53) and (54).

Remark 4. Theorem 1 applies to the special case when the
communication network is directed and static, in which case
we typically use Wk = W for all k ≥ 1. When the underlying
graph is strongly connected and W is compliant with the graph
structure, it is well-known that W has a unique stochastic
left-eigenvector π > 0, associated with the simple eigenvalue
1, i.e., π′W = π′. In this case, the convergence result for
Algorithm 1 follows immediately from Theorem 1 where πk =
π for all k ≥ 0.
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Remark 5. Theorem 1 uses the assumption that the sequence
{Gk} consists of strongly connected graphs. It is possible
to relax this assumption by considering B-strongly-connected
graph sequence, where it is assumed that there is an integer
B ≥ 10 such that the graph with edge set

EBk =

(k+1)B−1⋃
i=kB

Ei

is strongly connected for every k ≥ 0. In this case, the analysis
can make use of Theorem 4.20 in [21] stating that there exist
a set of absolute probability vectors {πk} such that

π′k+r (Wk+r−1 · · ·Wk+1Wk) = π′k.

Also, Lemma 3(b) can be extended to show that

[πk]i ≥
wmB

m
for all i ∈ [m] and all k ≥ 0 .

With the use of these results, the rest of convergence analysis
of Algorithm 1 will follow similarly to our analysis for strongly
connected graphs.

VII. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
approach through a Nash-Cournot game, as described in [15],
over several types of communication networks. Specifically,
consider a set of m firms (i.e., agents) involved in the produc-
tion of a homogeneous commodity. The firms compete over
N markets, M1, . . . ,MN , as presented in Figure 1. Denote
the market index by h, where h ∈ [N ] = {1, 2, . . . , N}. Firm
i, i ∈ [m] = {1, 2, . . . ,m} participates in the competition in
ni markets, where ni ≤ N is a non-negative integer number,
by deciding the amount of commodity xi ∈ Ωi = [0,Ci],
where Ci ∈ Rni , to be produced and delivered. We study
a distributed partial-information setting where there is no
centralized communication system between firms, however,
they may communicate with a local subset of neighbouring
firms via some underlying communication network Gk that
may vary over time.

Fig. 1: Network Nash-Cournot game: An edge from i to Mh

on this graph implies that firm i participates in market Mh.

Firm i has a local matrix Bi ∈ RN×ni , with elements 0 and
1 indicating which markets it participates in, i.e., we have:

[Bi]hj =

{
1, if agent i delivers [xi]j to Mh,

0, otherwise.

Hence, the matrices B1, . . . , Bm can be interpreted as bipartite
graphs specifying the connections between the firms and the

markets. Let n =
∑m
i=1 ni, x = [xi]i∈[m] ∈ Rn, and B =

[B1, · · · , Bm] ∈ RN×n. Then, given an action profile x of
all the firms, the vector of the total product supplied to the
markets can be expressed as Bx =

∑m
i=1Bixi ∈ RN .

Similar to [15], we consider a setting with m = 20 firms
and N = 7 markets. Also, the commodity’s price in market
Mh is assumed to be a linear function of the total amount of
commodity supplied to the market [15], i.e., we have:

ph(x) = P̄h − χh[Bx]h, ∀h,

where P̄h > 0 and χh > 0. This function implies that the price
decreases as the amount of supplied commodity increases. Let
P̄ = [P̄h]h=1,N ∈ RN and Ξ = diag([χh]h=1,N) ∈ RN×N.
Then, the price vector function P = [ph]h=1,N that maps the
total supply of each market to the corresponding price, i.e.
P : RN 7→ RN , has the following form:

P = P̄ − ΞAx,

and P ′Bixi is the payoff of firm i obtained by selling xi to
the markets that it connects with. Firm i’s production cost
ci(·) : Ωi 7→ R is a strongly convex, quadratic function:

ci(xi) = x′iQixi + q′ixi,

with Qi ∈ Rni×ni symmetric and Qi � 0, and qi ∈ Rni .
Thus, the local objective function of firm i, which depends on
the other firms’ production profile x−i, can be given as:

Ji(xi, x−i) = ci(xi)− (P̄ − ΞAx)′Bixi, ∀i, (56)

so that for all i,

∇iJi(x) = 2Qixi + qi +B′iΞBixi −B′i(P̄ − ΞBx). (57)

For the numerical experiments, we consider 0 ≤ xi ≤ Ci,
where each component of Ci is generated uniformly at random
from the interval [5, 10]. In the production cost function ci(xi),
Qi is diagonal with its entries uniformly distributed in [1, 8]
and each component qi is randomly drawn from a uniform
distribution on [1, 2]. In the price function P (Bx), P̄h and χh
are chosen uniformly at random from the intervals [10, 20] and
[1, 3], respectively.

We consider a partial-information scenario in which firms
can communicate with a local subset of neighbors via a
directed communication network Gk at time k. Figure 2
depicts the communication topologies used in our experiments,
including a directed ring, an undirected star, and a randomly
generated graph that underline the communication network
among 20 firms. We first consider static communication
networks. Then, the performance comparison between the
static case and the time-varying case is examined. Finally, we
investigate time-varying directed communication networks and
compare the performance of our proposed algorithm with the
state-of-the-art algorithm (i.e., Algorithm 1 in [5]).

All the graphs used in our simulations are strongly con-
nected. For each random graph, we create a directed connec-
tion (a ring or a cycle) going through all agents to ensure the
strongly connected property. It is worth emphasizing that the
communication network is different from the Nash-Cournot
game network. While the former specifies how the agents
exchange their information, the latter represents the Nash-
Cournot game which can be translated into specific utility
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(a) Ring (b) Star (c) Random

Fig. 2: Communication network topologies

functions and constraints in the optimization problem gov-
erning the game. The adjacency matrix [Ak]ij corresponding
to each graph Gk, which indicates whether agent j can
communicate with agent i, is defined as follows:{

[Ak]ij = 1, when j ∈ N in
ik ,

[Ak]ij = 0, otherwise.

We also define the row-stochastic weight matrix Wk according
to each Ak such that:

[Wk]ij =


0, if [Ak]ij = 0,

δ, if [Ak]ij = 1 and i 6= j,

1− δdk(i), if i = j,

where dk(i) represents the number of agents communicating
with agent i at iteration k, i.e., dk(i) = |N in

ik |. Additionally, let

δ =
0.5

maxi,k{dk(i)}
. By using the adjacency matrix Ak and

the weight matrix Wk, each agent can update its estimates of
the other agents’ decisions and its own decisions.

(a) ‖xk − x∗‖∞ (b) ‖zk+1 − zk‖∞

Fig. 3: Plots of errors when using different communication
graphs (a random graph, a directed ring, and an undirected
star). The numerical results are computed using Algorithm 1
with α = 0.05. Left: The errors between the actions generated
by the algorithm and the NE. Right: The errors between the
two estimation matrices z of all agents’ actions by other agents
including themselves at two consecutive iterations, which is
also known as the consensus error.

We will use our proposed algorithm (i.e., Algorithm 1) and
[5, Alg. 1] (i.e., Algorithm 1 in [5]) to solve the Nash-Cournot
game above. The algorithms terminate if ‖xk+1 − xk‖∞ =
maxi |[xk+1]i−[xk]i| and ‖zk+1−zk‖∞ = maxi,j |[zk+1]ij−
[zk]ij | are sufficiently small (i.e., less than 10−3 in our exper-
iments) or the number of iterations exceeds 100000 iterations.

(a) ‖xk − x∗‖∞ (b) ‖zk+1 − zk‖∞

Fig. 4: Plots of errors for a randomly generated graph when the
network is static versus when it varies over time. The results
are computed using Algorithm 1 with stepsize α = 0.05.

Note that, in [5], the authors proposed 2 algorithms. However,
[5, Alg. 2] uses the estimates of the PF eigenvector q. Hence,
it is sufficient for us to compare our proposed algorithm with
[5, Alg. 1] only.

First, we consider the static case, where the communication
graph is time-invariant, and compare the performance of
the proposed algorithm over different types of connectivity
(Figure 2). The impact of the time-varying nature of the con-
nectivity graph is also explored by considering time-varying
directed graphs. The communication topologies used in this
test include the following:

• A randomly generated graph where each firm can send
its information to 4 other firms,

• A directed ring or cycle,
• An undirected star with firm 1 as the center,
• A sequence of time-varying directed graphs.

All considered graphs are strongly connected, with self-
loops at every node. The stepsize α in Algorithm 1 is set
to be 0.05. Figure 3 illustrates the convergence properties of
the proposed algorithm over different connectivity graphs. It
can be observed that the convergence rate is fastest for the ring
connectivity and slowest for the star-shaped network. This is as
expected since for the star-shaped network, all the information
needs to go through firm 1 before reaching other agents. Thus,
this process increases the number of communications needed
to exchange information among the firms. Further details of
the convergence are shown in Table I.

Figure 4 compares the convergence of the proposed algo-
rithm when the communication network is static versus when
it is time-varying. An interesting observation is that when a
sequence of time-varying directed graphs is used, it converges
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Graph Type # Iterations Running
Time (s) ‖x

k − x∗‖∞ ‖zk+1 − zk‖∞
Static Random 2455 0.258 4.2e-6 9.9e-4
Static Ring 622 0.070 2.1e-5 9.9e-4
Static Star 6332 0.622 4.1e-7 9.9e-4
Time-varying
Random 774 0.121 2.2e-4 9.7e-4

TABLE I: Performance of Algorithm 1 when using different
types of communication graphs with stepsize α = 0.05. This
table displays the total number of iterations and the running
time for each algorithm as well as their performance in terms
of the errors at the last iteration, for one game instance.

faster. Intuitively, by varying the connections among all the
firms, the firms have more opportunities to exchange and
update information with more firms. Thus, from the results, the
proposed algorithm performs better with time-varying graphs
compared to a static graph.

Next, we compare the performance of the proposed algo-
rithm with the state-of-the-art algorithm in [5, Alg. 1] for time-
varying directed communication graphs. At every iteration,
we randomly generate a strongly connected directed graph
with self-loops. We assume that each firm can communicate
with at most 4 neighboring firms to keep the communication
network from being too dense. We run the two algorithms
with 3 different choices of stepsize α = 0.1, α = 0.05,
and α = 0.01, and conduct 1000 simulations for each choice
of α. Note that the communication graph changes at every
iteration. Additionally, in our proposed algorithm, all firms
use the same constant stepsize α. On the other hand, [5,
Alg. 1] uses different stepsizes for different firms where

αi =
α ∗min νi

νi
, ∀i, with νi is an element of the Perron-

Frobenius (PF) eigenvector of the adjacency matrix. We scale
all the stepsizes that are used in [5, Alg. 1] so that they are not
too big to ensure convergence. Indeed, [5, Alg. 1] requires the
knowledge of the communication network and the computation
of the PF eigenvector at every iteration, which is impractical
in many situations and computationally more expensive than
our algorithm, as will be shown in the simulation results.

(a) ‖xk − x∗‖∞ (b) ‖zk+1 − zk‖∞

Fig. 5: Convergence property for one game instance. The
numerical results are computed using Algorithm 1 and [5, Alg.
1] with α = 0.05. Left: gaps between the actions generated
by the algorithms and the NE. Right: Consensus errors.

Figure 5 illustrates the convergence of Algorithm 1 and [5,
Alg. 1] for a certain game instance (i.e., simulation number 1
in Table II). The actions xk and the estimates zk in the plot
are computed with α = 0.05. The stopping criteria is such that
the two errors ‖xk − x∗‖∞ and ‖zk+1 − zk‖∞ are less than

0.001. Algorithm 1 takes 0.243 seconds and stops after 740
iterations. For the verification purpose, we first find the NE x∗

under the situation where there is a centralized communication
system that broadcasts the information of all agents. Thus, all
agents have access to the decisions and estimations of all other
agents. In this case, we assume that all information are equally

taken into account by setting the weight matrix W =
1

N
11′. It

is shown that under full information, the sequence of decision
updates converges to the NE. Also, the obtained actions satisfy
the condition 〈∇Ji(x∗), xi − x∗i 〉 ≥ 0, ∀xi ∈ Ωi, ∀i ∈ [m],
which ensures the obtained actions correspond to the NE.

The left plot of Figure 5 shows the gaps between the action
xk generated by the two algorithms and the NE x∗ at each
iteration k. The right plot shows the errors between the two
estimation matrices at two consecutive iterations, i.e., zk and
zk+1, which are also known as the consensus errors. The
errors are computed using the max norm. We can see that the
sequence of actions xk generated by Algorithm 1 converges
to the NE x∗ as expected and the consensus error is also
decreasing to 0. The behavior of the consensus error implies
that all agents’ estimates of the other agents’ actions as well
as their own actions, reach consensus after a while. Figure 5
also shows the convergence behavior of [5, Alg. 1]. Algorithm
1 performs comparably with with [5, Alg. 1] without using the
knowledge of the communication matrix and the computation
of the PF eigenvector of the adjacency matrices. Indeed,
Algorithm 1 is more computationally efficient than [5, Alg.
1] which takes 1380 iterations and takes 1.631 seconds.

Table II further compares the the performance of Algorithm
1 to [5, Alg. 1] over 5 random game instances. We observe
that Algorithm 1 outperforms [5, Alg. 1] in terms of the total
running time. This is expected as in [5, Alg. 1], the value
of the PF eigenvector is required at each iteration, which
is computationally expensive, especially for larger systems
and communication networks. Meanwhile, in our proposed
algorithm, we do not require the knowledge of the PF eigen-
vector. We also run 1000 simulations for each choice of
α = 0.01, 0.05, and 0.1. The results are reported in Table III
by calculating the mean of the results obtained from running
1000 simulations. On the average, as presented in Table III,
our algorithm requires less iterations and takes less time to
converge compared to those of [5, Alg. 1].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a distributed algorithm for NE
seeking under a partial information scenario by combining the
idea of the distributed gradient method and decision estima-
tion alignment using consensus. We studied the convergence
of this algorithm over time-varying directed communication
networks. The algorithm involves every agent performing a
gradient step to minimize its own cost function while sharing
and retrieving information locally among its neighbors in the
network. While the existing methods assume balancedness
and/or global knowledge of the network communication struc-
ture such as the Perron-Frobenius eigenvector of the adjacency
matrix, our algorithm only requires row-stochasticity of the
mixing matrices which is easily implementable. The analysis
guarantees the convergence to the NE even when the net-
work varies over time. Through a Nash-Cournot game, we
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Simulation no. # Iterations Running Time (s) ‖xk − x∗‖∞ ‖zk+1 − zk‖∞
Alg. 1 [5] Alg. 1 [5] Alg. 1 [5] Alg. 1 [5]

1 740 1380 0.243 1.631 2.5e-04 1.3e-02 9.7e-04 7.4e-04
2 767 1630 0.247 1.864 2.6e-04 9.4e-03 9.8e-04 9.7e-04
3 653 1181 0.216 1.389 3.0e-04 1.1e-02 9.8e-04 8.2e-04
4 697 1302 0.226 1.517 1.5e-04 1.4e-02 9.5e-04 9.7e-04
5 757 1568 0.244 1.811 3.5e-04 1.3e-02 9.6e-04 8.7e-04

TABLE II: Performance comparison between Algorithm 1 (i.e., Alg. 1) and [5, Alg. 1] using α = 0.05. The parameters defining
each game are randomly generated for each simulation. This table displays the total number of iterations and the running time
of each algorithm as well as their performances in terms of the errors at the last iteration, for five instances of the game.

Stepsize Avg. # Iterations Avg. Running Time (s) Avg. errors ‖xk − x∗‖∞ Avg. errors ‖zk+1 − zk‖∞
Alg. 1 [5] Alg. 1 [5] Alg. 1 [5] Alg. 1 [5]

α = 0.01 1984.95 3846.31 0.6049 4.2346 0.0088 0.0649 0.0010 0.0009
α = 0.05 673.47 1319.22 0.2328 1.6313 0.0003 0.0099 0.0009 0.0009
α = 0.1 467.09 835.66 0.1582 0.9965 0.0011 0.0038 0.0010 0.0009

TABLE III: Performance comparison between Algorithm 1 (i.e., Alg. 1) and [5, Alg. 1]. For each stepsize, we conduct 1000
simulations. This table shows the average performances of the two algorithms in terms of the total number of iterations, the
running time, and the errors at the last iteration.

demonstrated that our proposed algorithm is able to converge
to the NE, while being more general and more computationally
efficient than the state-of-the-art methods. An interesting open
question is to explore the convergence while relaxing some
assumptions such as the strong convexity of the cost functions.
Additionally, extensions to more complex generalized game
models containing local constraints and coupling constraints
among agents’ decisions would be of considerable interest.
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of gradient play algorithms for distributed nash equilibrium seeking.
IEEE Transactions on Automatic Control, 66(11):5342–5353, 2021.

[25] Behrouz Touri and Angelia Nedić. Product of random stochastic
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